Les textures Représentations, synthèse et transfert

GIF-4105/7105 Photographie Algorithmique, Hiver 2017 Jean-François Lalonde

Crédit photo: Enchantedgal-Stock, deviantart.com

Merci à Derek Hoiem

Qu'est-ce qu'une texture?

Qu'est-ce qu'une texture?

Qu'est-ce qu'une texture?

"stuff" vs "things"

Thing (chose): Objet qui possède une taille et une forme spécifiques Stuff (?): Matériau défini par une distribution relativement homogène de propriétés, sans toutefois posséder de forme ou de taille spécifique

Forsyth et al., 1996 Source: Heitz et Koller, 2008

Textures et matériels

Textures et orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Textures et échelle

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

La texture

Source: Hoiem

Comment peut-on la représenter?

- Calculer les caractéristiques des arêtes à différentes orientations, et à différentes échelles
- Calculer statistiques simples (e.g. moyenne, écarttype, etc.) des réponses

"sur-représentation"

Banque de filtres

Associez les textures aux filtres

Filtres

Réponse (valeur absolue)

Associez les textures aux filtres

Filtres

Réponse (valeur absolue)

Source: Hoiem

Synthèse de texture & le remplissage de trous

Texture

- Représente des formes qui se répètent
- Les textures sont très fréquentes!

radis

roches

yogourt

Synthèse de textures

- But: répliquer la texture sur une plus grande surface
- Beaucoup d'applications: environnements virtuels, remplir les trous

Régulières

Quasi-régulières

Irrégulières

Quasi-stochastiques

Stochastiques

Idée 1: distribution de probabilités

- Calculer les statistiques de la texture
 - Histogramme des banques de filtre de détection d'arêtes
- Générer une nouvelle texture qui préserve ces statistiques

D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH '95. E. P. Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet coefficient magnitudes. In ICIP 1998.

Démonstration demo.m

Idée 1: distribution de probabilités

- Ça ne fonctionne pas (la plupart du temps)!
- Problème: les distributions de probabilités sont difficiles à modéliser adéquatement

Autre idée: échantillonner l'image

- Faisons l'hypothèse (Markovienne) que la valeur d'un pixel ne dépend que de celles de ses voisins
- Calculons la distribution de probabilité P(p | N(p))
- Trouvons la valeur qui maximise P(p | N(p))
- Est-ce que c'est possible?

Autre idée: échantillonner l'image

- À la place de calculer P(p | N(p)), cherchons dans l'image des endroits semblables à N(p)
- C'est une approximation pour P(p | N(p))!
- Au lieu de trouver le maximum, sélectionner un pixel aléatoirement

Cette idée vient de loin...

- Shannon et la théorie de l'information (1948)
- Générer des phrases (en anglais) en modélisant la probabilité de chaque mot étant donné les n mots précédents:
 - P(mot | n mots précédents) ça vous rappelle quelque chose?
- Valeur de *n* plus grande = phrases plus structurées

"I spent an interesting evening recently with a grain of salt." (exemple du faux utilisateur Mark V Shaney sur net.singles)

Détails

- Comment apparier les voisinages?
 - Somme des différences au carré (avec pondération gaussienne pour donner plus d'importance aux pixels plus proches)
- Dans quel ordre?
 - Pixels qui ont le plus de voisins en premier
 - Si on part de 0, commencer avec un endroit sélectionné aléatoirement
- De quelle taille devraient être les fenêtres?

Taille de la fenêtre

image

о

Taille de la fenêtre

1 11		
		<u>' ' '</u>
		╧┓━┓╾┕╾┕╾
1.		
	1.1.1	╷╾┺┑╯╻╶┶╻╵
, 1, 1,		
<u>'11' 1</u>		

and a second design of the second design of the

Algorithme

- Tant que l'image n'est pas remplie:
 - Trouver le pixel inconnu qui a le plus de voisins;
 - Trouver les *N* pixels dans l'image original dont le voisinage est le plus similaire à celui du pixel inconnu
 - Somme des différences au carré, pondérée par gaussienne
 - Sélectionner aléatoirement parmi les pixels semblables, et copier sa valeur dans l'image.

Résultats

Résultats

pain

En hommage à Shannon

r Dick Gephardt was fai rful riff on the looming : nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy g people about continuin ardt began, patiently obs s, that the legal system h g with this latest tanger

thaim. them . "Whephartfe lartifelintomimen el ck Clirticout omaim thartfelins.f out s anestc the ry onst wartfe lck Gephtoomimeationl sigab Chiooufit Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Weontongal s k Cirtioouirtfepe.ong pme abegal fartfenstemem itiensteneltorydt telemephinsverdt was agemer. ff ons artientont Cling peme as trife atith, "Boui s hal s fartfelt sig pedrikdt ske abounutie aboutioo tfeonewas your aboronthardt thatins fain, ped, ains. them, pabout wasy arfut couldy d, In A h ole emthrängboomme agas fa bontinsyst Clinüt : ory about continst Clipeoµinst Cloke agatiff out (stome minemen fly ardt beoraboul n, thenly as t G cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbout cout congagal comininga: mifmst Cliny abon al coountha.emungairt tf oun Vhe looorystan loontieph. intly on, theoplegatick (ul fatiezontly atie Diontiomt wal s f thegae ener nthahgat's enenhimas fan, "intchthory abons y

Remplissons les trous

Extrapolation

Résumé

- La synthèse de texture selon "Efros & Leung"
 - Simple
 - Résultats surprenants
 - ... mais extrêêêêêêmement lent!

Faire de la courtepointe: "Image Quilting"

- Observation: les pixels voisins sont fortement corrélés
- Idée: remplacer un pixel par un bloc de pixels
- Exactement pareil qu'avant, sauf que maintenant on veut modéliser P(B | N(B))
- Beaucoup plus rapide: on synthétise plusieurs pixels à la fois

Blocs voisins se chevauchent

Coupure minimisant les discontinuités

Coupure minimisant les discontinuités

blocs se chevauchant

discontinuité verticale

Synthèse de texture politique!

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had digitally altered a photo that appeared in a national cable television commercial. In the photo, a handful of soldiers were multiplied many times.

Transfert de textures

• Représenter un objet à partir d'un autre

Transfert de textures

Contrainte

Exemple de texture

Transfert de textures

- Prendre la texture d'une image et la "peinturer" sur une autre image
- Identique à la synthèse de texture, excepté qu'on rajoute une contrainte additionnelle:
- Consistence de la texture (les blocs de texture devraient être similaire à l'image (e.g. SDC sur la luminance)

source texture

correspondence maps

texture transfer result

Le Pain Sacré

http://www.nbcnews.com/id/6511148/ns/us_news-weird_news/t/virgin-mary-grilled-cheese-sells/

Image originale

Région masquée

Résultat (agrandi)

- Algorithme semi-aléatoire pour trouver les correspondances entre les blocs d'une image *de façon très rapide*
- Définition du problème:
 - Nous avons deux images, A et B.
 - Pour chaque bloc dans l'image A, calculer la translation (t_x, t_y) qui entre ce bloc et son plus proche voisin dans l'image B
 - Nous avons donc une translation (t_x, t_y) pour chaque pixel

- Idée #1: une translation aléatoire (une devinette!) sera bonne pour un certain nombre de pixels
- Initialisons avec une translation aléatoire

translation (t_x, t_y) pour chaque pixel

- Idée #2: les voisins sont cohérents
 - Le plus proche voisin d'un bloc centré à (x, y) devrait être un bon indice pour trouver le plus proche voisin du bloc à (x+1, y)
- Boucler sur chaque pixel:
 - Regarder si le voisin à gauche: si le bloc à sa droite est un meilleur candidat pour le bloc courant, alors remplacer le voisin du bloc courant. Sinon, garder le résultat précédent.
 - Répéter l'opération avec le voisin en haut.
- À la prochaine itération, utiliser les voisins en bas et à droite

Étapes principales

Amélioration itérative [Barnes et al. 2009]

But: reconstruire l'image A à partir de l'image B

https://vimeo.com/5024379

À retenir

 Texture: forme se répétant de manière structurée, ou stochastique

- Synthèse de texture:
 - par pixel: P(p | N(p))
 - par bloc: P(b | N(b))